

Fig. 2. Projection of the crystal structure of 4^{\prime}-amino- $2,2,3^{\prime}$ trichloroacetophenone down the a axis.

The small dihedral angle $\left(1.091^{\circ}\right)$ between the least-squares planes of the phenyl ring and the acetyl group $[\mathrm{C}(4), \mathrm{C}(7), \mathrm{O}(1), \mathrm{C}(8)]$ also indicates a strong conjugation.

The increase in the $C(7)-C(8)$ bond distance in the present structure compared to that in p-aminoacetophenone $[1.498(6) \AA$] can be explained as the effect of substitution at $C(8)$. This lengthening is also observed in the structure of chloramphenicol which has similar substitution (Chatterjee et al., 1979; Ravindra Acharya et al., 1979).

The coplanarity of the acetyl group with the phenyl ring results in a short $\mathrm{C}(5)-\mathrm{H}(5) \cdots \mathrm{O}(1)$ contact $[\mathrm{C}(5) \cdots \mathrm{O}(1)=2.790(8), \quad \mathrm{H}(5) \cdots \mathrm{O}(1)=2.47 \AA$, $\left.\angle \mathrm{C}(5)-\mathrm{H}(5) \cdots \mathrm{O}(1)=94.96^{\circ}\right]$.

Of the two amino H atoms only one, $\mathrm{H}(\mathrm{N})$ 1, takes part in an intermolecular N (amino)- $\mathrm{H} \cdots \mathrm{O}$ (carboxyl) hydrogen bond $[\mathrm{N}(1)-\mathrm{H}(\mathrm{N}) 1=0.98, \mathrm{~N}(1)-\mathrm{O}(1)=$ $2.959(7), \mathrm{H}(\mathrm{N}) 1 \cdots \mathrm{O}(1)=2 \cdot 12 \AA, \angle \mathrm{~N}(1)-\mathrm{H}(\mathrm{N}) 1 \cdots$ $\left.\mathrm{O}(1)=143^{\circ}\right]$.

In packing (Fig. 2) a partial overlapping of the phenyl ring is observed. The dichloroacetyl group and the chlorine substituent at $C(6)$ form bands extending along the b axis.

I would like to thank Mr S. Chaudhuri for his interest in this work and for very useful discussions.

References

Chatterjee, C., Duttagupta, J. K., Saha, N. N., Saenger, W. \& Muller, K. (1979). J. Cryst. Mol. Struct. 9(6), 295-304.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Domenicano, A., Mazzeo, P. \& Vaciago, A. (1976). Tetrahedron Lett. pp. 1029-1032.
Domenicano, A. \& Murray-Rust, P. (1979). Tetrahedron Lett. pp. 2283-2286.
Domenicano, A. \& Vaciago, A. (1979). Acta Cryst. B35, 1382-1388.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 221-234.
Haisa, M., Kashino, S., Yuasa, T. \& Akigawa, K. (1976). Acta Cryst. B32, 1326-1328.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Kim, J. K. S., Boyko, E. R. \& Carpenter, G. B. (1973). Acta Cryst. B29, 1141-1144.
Ravindra Acharya, K., Sake Gowda, D. S. \& Post. M. (1979). Acta Cryst. B 35, 1360-1363.
Rebstock, M. C. (1950). J. Am. Chem. Soc. 72, 4800-4803.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Tanimoto, Y., Kobayashi, H., Nagakura, S. \& Saito, Y. (1973). Acta Cryst. B29, 1822-1826.

Cyclic Dipeptides Containing Proline. Structure and Conformation of cyclo(-L-Phe-L-Pro-), $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$

By F. Mazza
Istituto di Strutturistica Chimica 'G. Giacomello' CNR, CP n. 10, 00016 Monterotondo Stazione, Roma, Italy
and G. Lucente, F. Pinnen and G. Zanotti
Istituto di Chimica Farmaceutica and Centro di Studio per la Chimica del Farmaco, Università di Roma, P. le A. Moro, 00185 Roma, Italy

(Received 30 April 1984; accepted 20 July 1984)

Abstract

M_{r}=244 \cdot 3\), monoclinic, $P 2_{1}, a=10.789$ (2), $b=10.061$ (2), $c=5.668$ (3) $\AA, \beta=92.70(3)^{\circ}, V=$ 614.6 (4) $\AA^{3}, Z=2, D_{x}=1.32 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=0.1 \mathrm{~mm}^{-1}, F(000)=260$, room tem-

$$
0108-2701 / 84 / 111974-03 \$ 01.50
$$

perature, final $R=0.038$ for 1739 independent observed reflections. The diketopiperazine ring has a pronounced boat conformation with equatorial C^{β} atoms. The degree of folding along the line joining the two C^{a}
(c) 1984 International Union of Crystallography
atoms has the highest value so far encountered: $\beta=50.7(1)^{\circ}$ and the distance between the two $\mathrm{H}\left(\mathrm{C}^{\alpha}\right)$ atoms is 2.37 (6) \AA. One of the two peptide bonds deviates slightly from planarity: $\omega_{1}=-4.5(4)^{\circ}$. The pyrrolidine ring assumes a $\mathrm{C}_{2}-\mathrm{C}_{\text {endo }}^{\beta}-\mathrm{C}_{\text {exo }}^{v}$ half-chair conformation. The benzyl side chain is extended to nitrogen, in a conformation analogous to that found for the preferred rotamer in chloroform solution. The crystal packing is characterized by a hydrogen bond between the phenylalanine NH and CO groups of screw-related molecules.

Introduction. Cyclic dipeptides (2,5-diketopiperazines; DKP's), both in the solid state and in solution, are extensively used as suitable models to gain information on more complex peptides and proteins. A large amount of data has been obtained from studies on cyclic systems containing amino acids with aromatic side chains and/or cyclic imino acids; the constraint imposed by the presence of an additional ring and the possible interaction of the aromatic side chain with the peptidic bonds have focused attention on these models. As a continuation of our studies in this field (Cerrini, Fedeli, Lucente, Mazza, Pinnen \& Zanotti, 1984) we report here the crystal and molecular structure of cyclo(-L-Phe-L-Pro-). This compound contains the residues of two of the most common and studied natural amino acids of the above-cited type; its structure and conformational parameters can then be usefully related to a very large number of peptidic systems.

Experimental. Title compound was prepared by deprotection of tert-butoxycarbonyl-L-phenylalanyl-L-proline methyl ester and acetic-acid-catalyzed cyclization of the dipeptide ester (Suzuki, Sasaki, Endo \& Mihara, 1981). Thus, absolute configuration of the title compound is that, assigned on a chemical basis, of the ester used in the preparation.

Single crystals suitable for X-ray analysis obtained from an aqueous solution by slow evaporation. Approximate unit-cell dimensions and space group determined from oscillation and Weissenberg photographs; crystal $0.5 \times 0.4 \times 0.15 \mathrm{~mm}$, automatic Syntex $P 2_{1}$ diffractometer, graphite monochromator, Mo $K \alpha$ radiation. Unit-cell parameters: least-squares fit of angular settings of 15 reflections in range $5<\theta<20^{\circ} ; h 0 \rightarrow 15, k$ $0 \rightarrow 14, l-7 \rightarrow 7, \omega$-scan technique; three standard reflections 060,332 and 141 measured after 97 showed only small deviations from means; 1895 independent reflections recorded, 1739 with $I>2.0 \sigma(I)$ considered observed and used for calculations. Lorentz and polarization corrections applied, no correction for extinction or absorption. Structure solved by MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980), 222 reflections and 2112 \sum_{2} relationships used in phase-determining procedure;
E map computed with phases of set with highest figures of merit revealed all non- H positions, refined isotropically then anisotropically by full-matrix least squares; $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, $w=\left(a+\left|F_{o}\right|+\right.$ $\left.c\left|F_{c}\right|^{2}\right)^{-1}$, with $a=2 F_{o}$ (min.) and $c=2 / F_{o}$ (max.). Difference Fourier map showed all H atoms in stereochemically feasible positions, H -atom positional parameters and isotropic thermal parameters derived from those of the carrier atoms included and held fixed in refinement. In final refinement cycle $(\Delta / \sigma)_{\max }=$ $0.001, S=0 \cdot 3$, number of parameters refined 162 ; max. height in final difference Fourier synthesis $0.1 \mathrm{e} \AA^{-3}$, final $R=0.038, R_{w}=0.054$, scattering factors from International Tables for X-ray Crystallography (1974).

Table 1. Final fractional coordinates and $B_{e q}$ values of the non-H atoms with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} b_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O	0.4429 (1)	0.2364 (4)	0.8061 (3)	$3 \cdot 6$ (1)
C_{1}^{\prime}	0.4496 (2)	0.3419 (4)	0.6990 (4)	$2 \cdot 7$ (1)
N_{1}	0.5017 (2)	0.5753 (4)	0.7586 (3)	2.9 (1)
$\mathrm{C}_{1}{ }^{\text {a }}$	0.5560 (2)	0.4429 (4)	0.7304 (3)	$2 \cdot 6$ (1)
C_{1}^{β}	0.6504 (2)	0.4091 (4)	0.9286 (4)	$3 \cdot 2$ (1)
C^{1}	0.7748 (2)	0.4716 (4)	0.8973 (3)	2.9 (1)
C_{1}^{11}	0.8426 (2)	0.4394 (4)	0.7015 (4)	$3 \cdot 8$ (1)
$\mathrm{C}_{1}^{\text {¢2 }}$	0.8263 (2)	$0 \cdot 5620$ (5)	1.0600 (4)	3.8 (1)
C_{1}^{11}	0.9570 (2)	0.4985 (5)	0.6695 (5)	4.8 (1)
$\mathrm{C}_{1}{ }^{2}$	0.9404 (3)	0.6201 (5)	1.0249 (5)	4.7 (1)
C_{1}^{5}	1.0052 (2)	0.5893*	0.8316 (6)	$4 \cdot 0$ (1)
O_{2}	0.3567 (2)	0.7232 (4)	0.6175 (3)	$3 \cdot 8$ (1)
C_{2}^{\prime}	0.4099 (2)	0.6165 (4)	0.6066 (3)	2.7 (1)
N_{2}	0.3660 (2)	0.3825 (4)	0.5334 (3)	2.9 (1)
C_{2}	0.3771 (2)	0.5131 (4)	0.4198 (3)	$2 \cdot 6$ (1)
C_{2}^{β}	0.2526 (2)	0.5309 (4)	0.2845 (4)	$3 \cdot 5$ (1)
C_{2}	0.2121 (2)	0.3886 (4)	0.2302 (4)	$3 \cdot 8$ (1)
C_{2}^{δ}	0.2549 (2)	0.3110 (4)	0.4506 (4)	$3 \cdot 5$ (1)

Fig. 1. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for the non- H atoms of cyclo(-L-Phe-L-Pro-). E.s.d.'s are in the ranges $0.003-0.006 \AA$ for lengths and $0.2-0.3^{\circ}$ for angles.

Discussion. The final atomic parameters of cyclo-(-L-Phe-L-Pro-) are given in Table 1;* bond lengths and valence angles involving non- H atoms are given in Fig. 1. The geometry of the molecule does not deviate significantly from that of cyclo(-d-Phe-L-Pro-) (Ramani, Venkatesan, Marsh \& Hu Kung, 1976).

A stereochemical view of the molecule is shown in Fig. 2. The DKP ring assumes a pronounced boat conformation as shown by the unusually high values of the two pairs of ψ and φ torsion angles given in Table 2: these values are only a few degrees smaller than those of a cyclohexane boat form (Bucourt, 1974). Both C ${ }^{\beta}$ atoms are in equatorial positions and the $\mathrm{H}\left(\mathrm{C}^{\alpha}\right)$ atoms are axial. The ring is folded along the line joining the two C^{α} atoms and the degree of folding, expressed by β (Karle, 1981), is $50.7(1)^{\circ}$: this value is the largest ever found for such ring systems with or without substituents on the amide N atoms (Radding, Donzel, Ueyama \& Goodman, 1980); the highest values of β, in the range $37-41^{\circ}$ (Karle, 1981, and references quoted therein), have been found for DKP rings containing one proline residue or two 3,4-dehydroproline residues. The high degree of folding can be also evaluated by considering the displacements of C_{1}^{α} and C_{2}^{α} atoms from the least-squares plane of the other four ring atoms which are respectively 0.603 (4) and 0.551 (4) \AA; correspondingly the distance between the two axial $\mathrm{H}\left(\mathrm{C}^{\alpha}\right)$ atoms is reduced to $2 \cdot 37(6) \AA$. This value approximates the sum of the van der Waals radii of H atoms ($2.40 \AA$) and indicates that the DKP conformation in cyclo(-L-Phe-L-Pro-) may represent an upper limit of the boat.

The pyrrolidine ring assumes the $\mathrm{C}_{2}-\mathrm{C}_{\text {endo }}^{\beta}-\mathrm{C}_{\text {exo }}^{\nu}$ (Madison, 1977) half-chair conformation, with the C^{β} and C^{v} atoms 0.231 (4) and -0.361 (4) $\AA \AA$ respectively on opposite sides of the plane of the other three ring atoms.

[^0]

Fig. 2. A perspective view of the molecule showing the boat form of cyclo(-L-Phe-L-Pro-).

Table 2. Relevant torsion angles $\left({ }^{\circ}\right)$ for cyclo(- $\mathrm{L}-$ Phe-L-Pro-) according to the convention of Klyne \& Prelog (1960)

The e.s.d.'s are within the range $0 \cdot 2-0 \cdot 5^{\circ}$.

The benzyl side chain is extended to nitrogen (Young, Madison \& Blout, 1976) as shown by the χ_{1}^{1} and $\chi_{1}^{2,2}$ torsion angles $1-79.7(3)$ and $118.3(3)^{\circ}$ respectively; see Table 21. This conformation corresponds to that of the preferred rotamer in chloroform solution (Vicar, Budesinsky \& Blaha, 1972; Young et al., 1976) and is in good agreement with the second minimum of intramolecular potential energy computed for cyclo(-L-Phe-L-Pro-) (Madison, Young \& Blout, 1976).

The crystal packing is characterized by a hydrogen bond of 2.988 (5) \AA between the phenylalanine NH and CO groups of screw-related molecules, with an $\mathrm{H} \cdots$ $\mathrm{O}_{1}\left(1-x, \frac{1}{2}+y, 2-z\right)$ contact of $2 \cdot 14(5) \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle of $167(2)^{\circ}$.

References

Bucourt, R. (1974). Topics in Stereochemistry, Vol. 8, edited by E. L. Eliel \& N. L. Allinger, pp. 160-219. New York: John Wiley.
Cerrini, S., Fedeli, W., Lucente, G.. Mazza, F., Pinnen, F. \& Zanotti, G. (1984). Int. J. Pept. Protein Res. 23, 223-229.
International Tables for X-ray' Cry'stallography (1974). Vol. IV. Birmingham: Kynoch Press.
Karle, 1. (1981). The Peptides, Vol. 4, edited by E. Gross \& J. Meienhofer, pp. 1-49. New York: Academic Press.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-568.
Madison, V. (1977). Biopolymers, 16, 2671-2692.
Madison, V., Young, P. E. \& Blout, E. R. (1976). J. Am. Chem. Soc. 98. 5358-5364.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A Slistem of Computer Programs for the Automatic Solution of Crustal Structures from X-ray Diffraction Data. Univs. of York. England, and Louvain, Belgium.
Radding, W., Donzel, B., Ueyama, N. \& Goodman, M. (1980). J. Am. Chem. Soc. 102, 5999-6005.

Ramani, R., Venkatesan, K., Marsh, R. E. \& Hu Kung, W. J. (1976). Acta Cryst. B32, 1051-1056.

Suzuki, K., Sasaki, Y., Endo, N. \& Mihara, Y. (1981). Chem. Pharm. Bull. 29, 233-237.
Vicar, J., Budesinsky, M. \& Blaha, K. (1972). Collect. Czech. Chem. Commun. 38, 1940-1956.
Young, P. E., Madison, V. \& Blout, E. R. (1976). J. Am. Chem. Soc. 98, 5365-5371.

[^0]: * Lists of structure factors, anisotropic thermal parameters of non- H atoms and coordinates of H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39648 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

